№ 8
Материальная точка движется прямолинейно по закону \(x(t)=-t^4+6t^3+5t+23\), где \(x\) — расстояние от точки отсчета в метрах, \(t\) — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени \(t=3\) с.
Ваш ответ:
№ 8
На рисунке изображен график \(y=f'(x)\) — производной функции \(f(x)\). Найдите абсциссу точки, в которой касательная к графику \(y~=~f(x)\) параллельна оси абсцисс или совпадает с ней.

Ваш ответ:
№ 8
Материальная точка движется прямолинейно по закону \(x(t)=6t^2-48t+17\), где \(x\) — расстояние от точки отсчета в метрах, \(t\) — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени \(t=9\) с.
Ваш ответ:
№ 8
На рисунке изображен график функции \(y=f(x)\) и отмечены точки -2, -1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

Ваш ответ:
№ 8
Прямая \(y=-5x+8\) является касательной к графику функции \(28x^2+bx+15\). Найдите b, учитывая, что абсцисса точки касания больше 0.
Ваш ответ:
№ 8
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=x^3+18x^2+114x-\frac{5}{12}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ваш ответ:
№ 8
На рисунке изображен график \(y=f'(x)\) — производной функции \(f(x)\), определенной на интервале \((-2; 12)\). Найдите промежутки убывания функции \(f(x)\). В ответе укажите длину наибольшего из них.

Ваш ответ:
№ 8
На рисунке изображен график \(y=f'(x)\) — производной функции \(f(x)\), определенной на интервале \((-5;5)\). Найдите количество точек экстремума функции \(f(x)\), принадлежащих отрезку \([-4;4]\).

Ваш ответ: