№ 11
После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле \(h=5t^2\), где h — расстояние в метрах, t — время падения в секундах. До дождя время падения камешков составляло 0,6 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах.
Ваш ответ:
№ 11
Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле \(P = \frac{{4mg}}{{\pi D^2 }}\), где \(m = 1200\) кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения \(g=10\) м/с\({}^2\), а \(\pi = 3\), определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.
Ваш ответ:
№ 11
Небольшой мячик бросают под острым углом \(\alpha\) к плоской горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле \(L=\frac{{v_0^2 }}{g}\sin 2\alpha\) (м), где \(v_0=20\) м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте \(g=10\) м/с\({}^2\)). При каком наименьшем значении угла (в градусах) мячик перелетит реку шириной 20 м?
Ваш ответ:
№ 11
При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону \(l = l_0 \sqrt {1 - \frac{{v^2 }}{{c^2 }}}\), где \(l_0 = 5\) м — длина покоящейся ракеты, \(c = 3 \cdot 10^5\) км/с — скорость света, а v — скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.
Ваш ответ:
№ 11
Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объeм и давление связаны соотношением \(pV^{1,4} = const\), где p (атм.) — давление в газе, V — объeм газа в литрах. Изначально объeм газа равен 1,6 л, а его давление равно одной атмосфере. В соответствии с техническими характеристиками поршень насоса выдерживает давление не более 128 атмосфер. Определите, до какого минимального объeма можно сжать газ. Ответ выразите в литрах.
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?
Ваш ответ:
№ 11
Деталью некоторого прибора является вращающаяся катушка. Она состоит из трeх однородных соосных цилиндров: центрального массой \(m = 8\) кг и радиуса \(R = 10\) см, и двух боковых с массами \(M = 1\) кг и с радиусами \(R+h\). При этом момент инерции катушки относительно оси вращения, выражаемый в кг\(\cdot\text{см}^2\), даeтся формулой \(I = \frac{{(m + 2M)R^2 }}{2} + M(2Rh + h^2 )\). При каком максимальном значении h момент инерции катушки не превышает предельного значения \(625\text{кг}\cdot\text{см}^2\)? Ответ выразите в сантиметрах.
Ваш ответ:
№ 11
При нормальном падении света с длиной волны \(\lambda=400\) нм на дифракционную решeтку с периодом d нм наблюдают серию дифракционных максимумов. При этом угол \(\varphi \) (отсчитываемый от перпендикуляра к решeтке), под которым наблюдается максимум, и номер максимума k связаны соотношением \(d\sin \varphi= k\lambda\). Под каким минимальным углом \(\varphi\) (в градусах) можно наблюдать второй максимум на решeтке с периодом, не превосходящим 1600 нм?
Ваш ответ: