№ 11
Опорные башмаки шагающего экскаватора, имеющего массу \(m = 1260\) тонн представляют собой две пустотелые балки длиной \(l = 18\) метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой \(p = \frac{{mg}}{{2ls}}\), где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте \(g=10\)м/с\({}^2\)). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 140 кПа. Ответ выразите в метрах.
Ваш ответ:
№ 11
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: \(F_{\rm{A}} = \alpha \rho gr^3\), где \(\alpha = 4,2\) — постоянная, r — радиус аппарата в метрах, \(\rho = 1000~\text{кг}/\text{м}^3\) — плотность воды, а g — ускорение свободного падения (считайте \(g = 10\) Н/кг). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 336000 Н? Ответ выразите в метрах.
Ваш ответ:
№ 11
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: \(F_{\rm{A}} = \rho gl^3\), где l — длина ребра куба в метрах, \(\rho = 1000~\text{кг}/\text{м}^3\) — плотность воды, а g — ускорение свободного падения (считайте \(g = 9,8\) Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем \(78 400\) Н? Ответ выразите в метрах.
Ваш ответ:
№ 11
Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: \(P = \sigma ST^4 \), где \(\sigma = 5,7 \cdot 10^{-8}\) — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь \(S = \frac{1}{{16}} \cdot 10^{20}\) м\({}^2\), а излучаемая ею мощность P не менее \(9,12\cdot 10^{25}\) Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина.
Ваш ответ:
№ 11
Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой \(\eta = \frac{{T_1 - T_2 }}{{T_1 }} \cdot 100\% \), где \(T_1\) — температура нагревателя (в градусах Кельвина), \(T_2\) — температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя \(T_1\) КПД этого двигателя будет не меньше \(15\%\), если температура холодильника \(T_2 = 340\) К? Ответ выразите в градусах Кельвина.
Ваш ответ:
№ 11
Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле \(P = \frac{{4mg}}{{\pi D^2 }}\), где \(m = 1200\) кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения \(g=10\) м/с\({}^2\), а \(\pi = 3\), определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?
Ваш ответ:
№ 11
Мяч бросили под углом \(\alpha\) к плоской горизонтальной поверхности земли. Время полeта мяча (в секундах) определяется по формуле \(t = \frac{{2v_0 \sin \alpha }}{g}\). При каком наименьшем значении угла \(\alpha\) (в градусах) время полeта будет не меньше 3 секунд, если мяч бросают с начальной скоростью \(v_0= 30\) м/с? Считайте, что ускорение свободного падения \(g=10\) м/с\({}^2\).
Ваш ответ: