№ 11
Высота над землeй подброшенного вверх мяча меняется по закону \(h(t)=1,6 + 8t - 5t^2 \), где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трeх метров?
Ваш ответ:
№ 11
Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением \(a~\text{км}/\text{ч}^2\), вычисляется по формуле \(v = \sqrt {2la}\). Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч\({}^2\).
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?
Ваш ответ:
№ 11
Коэффициент полезного действия (КПД) кормозапарника равен отношению количества теплоты, затраченного на нагревание воды массой \(m_\textrm{в}\) (в килограммах) от температуры \(t_1\) до температуры \(t_2\) (в градусах Цельсия) к количеству теплоты, полученному от сжигания дров массы \(m_\textrm{др}\) кг. Он определяется формулой \(\eta = \frac{c_\textrm{в} m_\textrm{в}(t_2 - t_1 )}{q_\textrm{др} m_\textrm{др}} \cdot 100\%\), где \(c_\textrm{в} = {\rm{4}}{\rm{,2}} \cdot 10^3\) Дж/(кг\(\cdot\)К) — теплоёмкость воды, \(q_\textrm{др} = 8,3 \cdot 10^6\) Дж/кг — удельная теплота сгорания дров. Определите наименьшее количество дров, которое понадобится сжечь в кормозапарнике, чтобы нагреть \(m_{\rm} = 83\) кг воды от \(10^\circ C\) до кипения, если известно, что КПД кормозапарника не больше \(21\%\). Ответ выразите в килограммах.
Ваш ответ:
№ 11
Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением a км/ч\({}^2\), вычисляется по формуле \(v^2 = 2la\). Определите, с какой наименьшей скоростью будет двигаться автомобиль на расстоянии 1 километра от старта, если по конструктивным особенностям автомобиля приобретаемое им ускорение не меньше 5000 км/ч\({}^2\). Ответ выразите в км/ч.
Ваш ответ:
№ 11
Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: \(P = \sigma ST^4 \), где \(\sigma = 5,7 \cdot 10^{-8}\) — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь \(S = \frac{1}{{16}} \cdot 10^{20}\) м\({}^2\), а излучаемая ею мощность P не менее \(9,12\cdot 10^{25}\) Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина.
Ваш ответ:
№ 11
В розетку электросети подключены приборы, общее сопротивление которых составляет \(R_{1}=90\) Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление \(R_{2}\) этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями \(R_{1}\) Ом и \(R_{2}\) Ом их общее сопротивление даeтся формулой \(R_{{\text{общ}}} = \frac{{R_{1} R_{2} }}{{R_{1} + R_{2}}}\) (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в омах.
Ваш ответ:
№ 11
По закону Ома для полной цепи сила тока, измеряемая в амперах, равна \(I = \frac{\varepsilon }{{R + r}}\), где \(\varepsilon \) — ЭДС источника (в вольтах), \(r = 1\) Ом — его внутреннее сопротивление, R — сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более \(20\%\) от силы тока короткого замыкания \(I_{\text{кз}} = \frac{\varepsilon }{r}\)? (Ответ выразите в омах.)
Ваш ответ: