№ 11
Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: \(P = \sigma ST^4 \), где \(\sigma = 5,7 \cdot 10^{-8}\) — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь \(S = \frac{1}{{16}} \cdot 10^{20}\) м\({}^2\), а излучаемая ею мощность P не менее \(9,12\cdot 10^{25}\) Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина.
Ваш ответ:
№ 11
Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением a км/ч\({}^2\), вычисляется по формуле \(v^2 = 2la\). Определите, с какой наименьшей скоростью будет двигаться автомобиль на расстоянии 1 километра от старта, если по конструктивным особенностям автомобиля приобретаемое им ускорение не меньше 5000 км/ч\({}^2\). Ответ выразите в км/ч.
Ваш ответ:
№ 11
Находящийся в воде водолазный колокол, содержащий \(\upsilon = 2\) моля воздуха при давлении \(p_1 = 1,5\) атмосферы, медленно опускают на дно водоeма. При этом происходит изотермическое сжатие воздуха. Работа, совершаемая водой при сжатии воздуха, определяется выражением \(A = \alpha \upsilon T\log _2 \frac{{p_2 }}{{p_1 }}\) (Дж), где \(\alpha=5,75\) — постоянная, \(T = 300\) К — температура воздуха, \(p_1\) (атм) — начальное давление, а \(p_2\) (атм) — конечное давление воздуха в колоколе. До какого наибольшего давления \(p_2\) можно сжать воздух в колоколе, если при сжатии воздуха совершается работа не более чем 6900 Дж? Ответ приведите в атмосферах.
Ваш ответ:
№ 11
Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле \(P = \frac{{4mg}}{{\pi D^2 }}\), где \(m = 1200\) кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения \(g=10\) м/с\({}^2\), а \(\pi = 3\), определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.
Ваш ответ:
№ 11
В боковой стенке высокого цилиндрического бака у самого дна закреплeн кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нeм, выраженная в метрах, меняется по закону \(H(t) = at^2 + bt + H_0\), где \(H_0 = 4\) м — начальный уровень воды, \(a = \frac{1}{{100}}\ \) м/мин2, и \(b=-\frac{2}{5}\) м/мин — постоянные, t — время в минутах, прошедшее с момента открытия крана. В течение какого времени вода будет вытекать из бака? Ответ приведите в минутах.
Ваш ответ:
№ 11
Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле \(A(\omega ) = \frac{{A_0 \omega _p^2 }}{{|\omega_p^2 - \omega ^2|}}\), где \(\omega \) — частота вынуждающей силы (в \(c^{-1} \)), \(A_0 \) — постоянный параметр, \(\omega_p = 360c^{-1}\) — резонансная частота. Найдите максимальную частоту \(\omega \), меньшую резонансной, для которой амплитуда колебаний превосходит величину \(A_0 \) не более чем на \(12,5\%\). Ответ выразите в \(c^{-1}\).
Ваш ответ:
№ 11
Груз массой 0,08 кг колеблется на пружине со скоростью, меняющейся по закону \(v(t)=0,5\cos \pi t\), где t — время в секундах. Кинетическая энергия груза вычисляется по формуле \(E=\frac{{mv^2 }}{2}\), где m — масса груза (в кг), v — скорость груза (в м/с). Определите, какую долю времени из первой секунды после начала движения кинетическая энергия груза будет не менее \(5 \cdot 10^{-3}\) Дж. Ответ выразите десятичной дробью, если нужно, округлите до сотых.
Ваш ответ:
№ 11
Трактор тащит сани с силой \(F=80\) кН, направленной под острым углом \(\alpha\) к горизонту. Работа трактора (в килоджоулях) на участке длиной \(S=50\) м вычисляется по формуле \(A=FS\cos\alpha \). При каком максимальном угле \(\alpha \) (в градусах) совершeнная работа будет не менее 2000 кДж?
Ваш ответ: