№ 11
Высота над землeй подброшенного вверх мяча меняется по закону \(h(t)=1,6 + 8t - 5t^2 \), где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трeх метров?
Ваш ответ:
№ 11
Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: \(P = \sigma ST^4 \), где \(\sigma = 5,7 \cdot 10^{-8}\) — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь \(S = \frac{1}{{16}} \cdot 10^{20}\) м\({}^2\), а излучаемая ею мощность P не менее \(9,12\cdot 10^{25}\) Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина.
Ваш ответ:
№ 11
Амплитуда колебаний маятника зависит от частоты вынуждающей силы и определяется по формуле \(A(\omega ) = \frac{{A_0 \omega _p^2 }}{{|\omega_p^2 - \omega ^2|}}\), где \(\omega \) — частота вынуждающей силы (в \(c^{-1} \)), \(A_0 \) — постоянный параметр, \(\omega_p = 360c^{-1}\) — резонансная частота. Найдите максимальную частоту \(\omega \), меньшую резонансной, для которой амплитуда колебаний превосходит величину \(A_0 \) не более чем на \(12,5\%\). Ответ выразите в \(c^{-1}\).
Ваш ответ:
№ 11
Небольшой мячик бросают под острым углом \(\alpha\) к плоской горизонтальной поверхности земли. Максимальная высота полeта мячика, выраженная в метрах, определяется формулой \(H=\frac{{v_0^2 }}{{4g}}(1 - \cos 2\alpha )\), где \(v_0 = 20\) м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте \(g=10\) м/с\({}^2\)). При каком наименьшем значении угла \(\alpha\) (в градусах) мячик пролетит над стеной высотой 4 м на расстоянии 1 м?
Ваш ответ:
№ 11
Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температур вычисляется по формуле \(T(t) = T_0 + bt + at^2 \), где \(t\) — время в минутах, \(T_0 = 1400\) К, \(a = - 10\) К/мин\({}^2\), \(b = 200\) К/мин. Известно, что при температуре нагревателя свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.
Ваш ответ:
№ 11
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: \(F_{\rm{A}} = \alpha \rho gr^3\), где \(\alpha = 4,2\) — постоянная, r — радиус аппарата в метрах, \(\rho = 1000~\text{кг}/\text{м}^3\) — плотность воды, а g — ускорение свободного падения (считайте \(g = 10\) Н/кг). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 336000 Н? Ответ выразите в метрах.
Ваш ответ:
№ 11
При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу, частота звукового сигнала, регистрируемого приёмником, не совпадает с частотой исходного сигнала \(f_0 = 150\) Гц и определяется следующим выражением: \(f =f_0 \frac{{c + u}}{{c - v}}\) (Гц), где \(c\) — скорость распространения сигнала в среде (в м/с), а \(u=10\) м/с и \(v=15\) м/с — скорости приёмника и источника относительно среды соответственно. При какой максимальной скорости \(c\) (в м/с) распространения сигнала в среде частота сигнала в приёмнике \(f\) будет не менее 160 Гц?
Ваш ответ:
№ 11
Мотоциклист, движущийся по городу со скоростью \(v_0 = 57\) км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением \(a = 12\) км/ч\({}^2\). Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением \(S = v_0 t + \frac{{at^2 }}{2}\). Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 30 км от города. Ответ выразите в минутах.
Ваш ответ: