№ 11
Установка для демонстрации адиабатического сжатия представляет собой сосуд с поршнем, резко сжимающим газ. При этом объeм и давление связаны соотношением \(pV^{1,4} = const\), где p (атм.) — давление в газе, V — объeм газа в литрах. Изначально объeм газа равен 1,6 л, а его давление равно одной атмосфере. В соответствии с техническими характеристиками поршень насоса выдерживает давление не более 128 атмосфер. Определите, до какого минимального объeма можно сжать газ. Ответ выразите в литрах.
Ваш ответ:
№ 11
Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью \(v = 3\) м/с под острым углом \(\alpha \) к рельсам. От толчка платформа начинает ехать со скоростью \(u = \frac{m}{{m + M}}v\cos \alpha \) (м/с), где \(m = 80\) кг — масса скейтбордиста со скейтом, а \(M = 400\) кг — масса платформы. Под каким максимальным углом \(\alpha \) (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,25 м/с?
Ваш ответ:
№ 11
Груз массой 0,08 кг колеблется на пружине со скоростью, меняющейся по закону \(v(t)=0,5\cos \pi t\), где t — время в секундах. Кинетическая энергия груза вычисляется по формуле \(E=\frac{{mv^2 }}{2}\), где m — масса груза (в кг), v — скорость груза (в м/с). Определите, какую долю времени из первой секунды после начала движения кинетическая энергия груза будет не менее \(5 \cdot 10^{-3}\) Дж. Ответ выразите десятичной дробью, если нужно, округлите до сотых.
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на небольшой высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. На какой наименьшей высоте следует располагаться наблюдателю, чтобы он видел горизонт на расстоянии не менее 4 километров? Ответ выразите в метрах.
Ваш ответ:
№ 11
По закону Ома для полной цепи сила тока, измеряемая в амперах, равна \(I = \frac{\varepsilon }{{R + r}}\), где \(\varepsilon \) — ЭДС источника (в вольтах), \(r = 1\) Ом — его внутреннее сопротивление, R — сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более \(20\%\) от силы тока короткого замыкания \(I_{\text{кз}} = \frac{\varepsilon }{r}\)? (Ответ выразите в омах.)
Ваш ответ:
№ 11
К источнику с ЭДС \(\varepsilon = 55\) В и внутренним сопротивлением \(r = 0,5\) Ом, хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, даeтся формулой \(U = \frac{{\varepsilon R}}{{R + r}}\). При каком наименьшем значении сопротивления нагрузки напряжение на ней будет не менее 50 В? Ответ выразите в омах.
Ваш ответ:
№ 11
Сила тока в цепи I (в амперах) определяется напряжением в цепи и сопротивлением электроприбора по закону Ома: \(I = \frac{U}{R}\), где U — напряжение в вольтах, R — сопротивление электроприбора в омах. В электросеть включeн предохранитель, который плавится, если сила тока превышает 4 А. Определите, какое минимальное сопротивление должно быть у электроприбора, подключаемого к розетке в 220 вольт, чтобы сеть продолжала работать. Ответ выразите в омах.
Ваш ответ:
№ 11
Катер должен пересечь реку шириной \(L = 100\) м и со скоростью течения \(u =0,5\) м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением \(t = \frac{L}{u}{\mathop{\rm ctg}\nolimits}\alpha\), где \(\alpha \) — острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом \(\alpha \) (в градусах) нужно плыть, чтобы время в пути было не больше 200 с?
Ваш ответ: