№ 11
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость спуска батискафа, выражаемая в м/с, определяется по формуле \(v = c\frac{f - f_0 }{f + f_0 }\), где \(c=1500\) м/с — скорость звука в воде, \(f_0 \) — частота испускаемых импульсов (в МГц), f — частота отражeнного от дна сигнала, регистрируемая приeмником (в МГц). Определите наибольшую возможную частоту отраженного сигнала f, если скорость погружения батискафа не должна превышать 2 м/с.
Ваш ответ:
№ 11
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: \(F_{\rm{A}} = \rho gl^3\), где l — длина ребра куба в метрах, \(\rho = 1000~\text{кг}/\text{м}^3\) — плотность воды, а g — ускорение свободного падения (считайте \(g = 9,8\) Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем \(78 400\) Н? Ответ выразите в метрах.
Ваш ответ:
№ 11
Очень лeгкий заряженный металлический шарик зарядом \(q = 2 \cdot 10^{-6} \) Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет \(v = 5\) м/с, на него начинает действовать постоянное магнитное поле, вектор индукции B которого лежит в той же плоскости и составляет угол \(\alpha\) с направлением движения шарика. Значение индукции поля \(B = 4 \cdot 10^{-3}\) Тл. При этом на шарик действует сила Лоренца, равная \(F_{\text{л}} = qvB\sin \alpha\) (Н) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла \(\alpha \in \left[ {0^\circ ;180^\circ } \right]\) шарик оторвeтся от поверхности, если для этого нужно, чтобы сила \(F_{\text{л}}\) была не менее чем \(2 \cdot 10^{-8}\) Н? Ответ дайте в градусах.
Ваш ответ:
№ 11
Находящийся в воде водолазный колокол, содержащий \(\upsilon = 2\) моля воздуха при давлении \(p_1 = 1,5\) атмосферы, медленно опускают на дно водоeма. При этом происходит изотермическое сжатие воздуха. Работа, совершаемая водой при сжатии воздуха, определяется выражением \(A = \alpha \upsilon T\log _2 \frac{{p_2 }}{{p_1 }}\) (Дж), где \(\alpha=5,75\) — постоянная, \(T = 300\) К — температура воздуха, \(p_1\) (атм) — начальное давление, а \(p_2\) (атм) — конечное давление воздуха в колоколе. До какого наибольшего давления \(p_2\) можно сжать воздух в колоколе, если при сжатии воздуха совершается работа не более чем 6900 Дж? Ответ приведите в атмосферах.
Ваш ответ:
№ 11
Скейтбордист прыгает на стоящую на рельсах платформу, со скоростью \(v = 3\) м/с под острым углом \(\alpha \) к рельсам. От толчка платформа начинает ехать со скоростью \(u = \frac{m}{{m + M}}v\cos \alpha \) (м/с), где \(m = 80\) кг — масса скейтбордиста со скейтом, а \(M = 400\) кг — масса платформы. Под каким максимальным углом \(\alpha \) (в градусах) нужно прыгать, чтобы разогнать платформу не менее чем до 0,25 м/с?
Ваш ответ:
№ 11
При нормальном падении света с длиной волны \(\lambda=400\) нм на дифракционную решeтку с периодом d нм наблюдают серию дифракционных максимумов. При этом угол \(\varphi \) (отсчитываемый от перпендикуляра к решeтке), под которым наблюдается максимум, и номер максимума k связаны соотношением \(d\sin \varphi= k\lambda\). Под каким минимальным углом \(\varphi\) (в градусах) можно наблюдать второй максимум на решeтке с периодом, не превосходящим 1600 нм?
Ваш ответ:
№ 11
Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температур вычисляется по формуле \(T(t) = T_0 + bt + at^2 \), где \(t\) — время в минутах, \(T_0 = 1400\) К, \(a = - 10\) К/мин\({}^2\), \(b = 200\) К/мин. Известно, что при температуре нагревателя свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.
Ваш ответ:
№ 11
Мотоциклист, движущийся по городу со скоростью \(v_0 = 57\) км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением \(a = 12\) км/ч\({}^2\). Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением \(S = v_0 t + \frac{{at^2 }}{2}\). Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 30 км от города. Ответ выразите в минутах.
Ваш ответ: