№ 11
Камнеметательная машина выстреливает камни под некоторым острым углом к горизонту. Траектория полeта камня описывается формулой \(y = ax^2 + bx\), где \(a = - \frac{1}{{100}} \) м\({}^{ - 1}\), \(b=1\) — постоянные параметры, x (м) — смещение камня по горизонтали, y (м) — высота камня над землeй. На каком наибольшем расстоянии (в метрах) от крепостной стены высотой 8 м нужно расположить машину, чтобы камни пролетали над стеной на высоте не менее 1 метра?
Ваш ответ:
№ 11
Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием \(f = 30\) см. Расстояние \(d_1\) от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние \(d_2\) от линзы до экрана — в пределах от 150 до 180 см. Изображение на экране будет четким, если выполнено соотношение \(\frac{1}{{d_1}} + \frac{1}{{d_2}} = \frac{1}{f}\). Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы еe изображение на экране было чeтким. Ответ выразите в сантиметрах.
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?
Ваш ответ:
№ 11
Некоторая компания продает свою продукцию по цене \(p=500\) руб. за единицу, переменные затраты на производство одной единицы продукции составляют \(v=300\) руб., постоянные расходы предприятия \(f= 700000\) руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле \(\pi(q)=q(p-v)-f\). Определите наименьший месячный объeм производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет не меньше 300000 руб.
Ваш ответ:
№ 11
Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле \(P = \frac{{4mg}}{{\pi D^2 }}\), где \(m = 1200\) кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения \(g=10\) м/с\({}^2\), а \(\pi = 3\), определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.
Ваш ответ:
№ 11
Очень лeгкий заряженный металлический шарик зарядом \(q = 2 \cdot 10^{-6} \) Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет \(v = 5\) м/с, на него начинает действовать постоянное магнитное поле, вектор индукции B которого лежит в той же плоскости и составляет угол \(\alpha\) с направлением движения шарика. Значение индукции поля \(B = 4 \cdot 10^{-3}\) Тл. При этом на шарик действует сила Лоренца, равная \(F_{\text{л}} = qvB\sin \alpha\) (Н) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла \(\alpha \in \left[ {0^\circ ;180^\circ } \right]\) шарик оторвeтся от поверхности, если для этого нужно, чтобы сила \(F_{\text{л}}\) была не менее чем \(2 \cdot 10^{-8}\) Н? Ответ дайте в градусах.
Ваш ответ:
№ 11
Плоский замкнутый контур площадью \(S = 0,5\) м\({}^2\) находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой \(\varepsilon_{i} = aS\cos \alpha\), где \(\alpha\) — острый угол между направлением магнитного поля и перпендикуляром к контуру, \(a=4 \cdot 10^{-4} \) Тл/с — постоянная, S — площадь замкнутого контура, находящегося в магнитном поле (в м\({}^2\)). При каком минимальном угле \(\alpha \) (в градусах) ЭДС индукции не будет превышать \(10^{-4}\) В?
Ваш ответ:
№ 11
Если достаточно быстро вращать ведeрко с водой на верeвке в вертикальной плоскости, то вода не будет выливаться. При вращении ведeрка сила давления воды на дно не остаeтся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила еe давления на дно будет положительной во всех точках траектории кроме верхней, где она может быть равной нулю. В верхней точке сила давления, выраженная в ньютонах, равна \(P= m\left( {\frac{{v^2 }}{L} - g} \right)\), где m — масса воды в килограммах, v — скорость движения ведeрка в м/с, L — длина верeвки в метрах, g — ускорение свободного падения (считайте \(g=10\)м/с\({}^2\)). С какой наименьшей скоростью надо вращать ведeрко, чтобы вода не выливалась, если длина верeвки равна 40 см? Ответ выразите в м/с.
Ваш ответ: