№ 11
Для поддержания навеса планируется использовать цилиндрическую колонну. Давление P (в паскалях), оказываемое навесом и колонной на опору, определяется по формуле \(P = \frac{{4mg}}{{\pi D^2 }}\), где \(m = 1200\) кг — общая масса навеса и колонны, D — диаметр колонны (в метрах). Считая ускорение свободного падения \(g=10\) м/с\({}^2\), а \(\pi = 3\), определите наименьший возможный диаметр колонны, если давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.
Ваш ответ:
№ 11
Небольшой мячик бросают под острым углом \(\alpha\) к плоской горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле \(L=\frac{{v_0^2 }}{g}\sin 2\alpha\) (м), где \(v_0=20\) м/с — начальная скорость мячика, а g — ускорение свободного падения (считайте \(g=10\) м/с\({}^2\)). При каком наименьшем значении угла (в градусах) мячик перелетит реку шириной 20 м?
Ваш ответ:
№ 11
Для сматывания кабеля на заводе используют лебeдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону \(\varphi = \omega t + \frac{{\beta t^2 }}{2}\), где t — время в минутах, \(\omega = 20^\circ/\)мин — начальная угловая скорость вращения катушки, а \(\beta = 4^\circ/\)мин\({}^2\) — угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки \(\varphi\) достигнет \(1200^\circ\). Определите время после начала работы лебeдки, не позже которого рабочий должен проверить еe работу. Ответ выразите в минутах.
Ваш ответ:
№ 11
Очень лeгкий заряженный металлический шарик зарядом \(q = 2 \cdot 10^{-6} \) Кл скатывается по гладкой наклонной плоскости. В момент, когда его скорость составляет \(v = 5\) м/с, на него начинает действовать постоянное магнитное поле, вектор индукции B которого лежит в той же плоскости и составляет угол \(\alpha\) с направлением движения шарика. Значение индукции поля \(B = 4 \cdot 10^{-3}\) Тл. При этом на шарик действует сила Лоренца, равная \(F_{\text{л}} = qvB\sin \alpha\) (Н) и направленная вверх перпендикулярно плоскости. При каком наименьшем значении угла \(\alpha \in \left[ {0^\circ ;180^\circ } \right]\) шарик оторвeтся от поверхности, если для этого нужно, чтобы сила \(F_{\text{л}}\) была не менее чем \(2 \cdot 10^{-8}\) Н? Ответ дайте в градусах.
Ваш ответ:
№ 11
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: \(F_{\rm{A}} = \alpha \rho gr^3\), где \(\alpha = 4,2\) — постоянная, r — радиус аппарата в метрах, \(\rho = 1000~\text{кг}/\text{м}^3\) — плотность воды, а g — ускорение свободного падения (считайте \(g = 10\) Н/кг). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 336000 Н? Ответ выразите в метрах.
Ваш ответ:
№ 11
Катер должен пересечь реку шириной \(L = 100\) м и со скоростью течения \(u =0,5\) м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением \(t = \frac{L}{u}{\mathop{\rm ctg}\nolimits}\alpha\), где \(\alpha \) — острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом \(\alpha \) (в градусах) нужно плыть, чтобы время в пути было не больше 200 с?
Ваш ответ:
№ 11
При нормальном падении света с длиной волны \(\lambda=400\) нм на дифракционную решeтку с периодом d нм наблюдают серию дифракционных максимумов. При этом угол \(\varphi \) (отсчитываемый от перпендикуляра к решeтке), под которым наблюдается максимум, и номер максимума k связаны соотношением \(d\sin \varphi= k\lambda\). Под каким минимальным углом \(\varphi\) (в градусах) можно наблюдать второй максимум на решeтке с периодом, не превосходящим 1600 нм?
Ваш ответ:
№ 11
Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температур вычисляется по формуле \(T(t) = T_0 + bt + at^2 \), где \(t\) — время в минутах, \(T_0 = 1400\) К, \(a = - 10\) К/мин\({}^2\), \(b = 200\) К/мин. Известно, что при температуре нагревателя свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.
Ваш ответ: