№ 11
Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением \(a~\text{км}/\text{ч}^2\), вычисляется по формуле \(v = \sqrt {2la}\). Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч\({}^2\).
Ваш ответ:
№ 11
Коэффициент полезного действия (КПД) некоторого двигателя определяется формулой \(\eta = \frac{{T_1 - T_2 }}{{T_1 }} \cdot 100\% \), где \(T_1\) — температура нагревателя (в градусах Кельвина), \(T_2\) — температура холодильника (в градусах Кельвина). При какой минимальной температуре нагревателя \(T_1\) КПД этого двигателя будет не меньше \(15\%\), если температура холодильника \(T_2 = 340\) К? Ответ выразите в градусах Кельвина.
Ваш ответ:
№ 11
Независимое агентство намерено ввести рейтинг новостных интернет-изданий на основе оценок информативности \(In\), оперативности \(Op\), объективности публикаций \(Tr\), а также качества сайта \(Q\). Каждый отдельный показатель оценивается читателями по 5-балльной шкале целыми числами от 0 до 4. Аналитики, составляющие формулу рейтинга, считают, что объективность ценится втрое, а информативность публикаций — вдвое дороже, чем оперативность и качество сайта. Таким образом, формула приняла вид \( R=\frac{2In+Op+3Tr+Q}{A}. \) Каким должно быть число \(A\), чтобы издание, у которого все оценки наибольшие, получило бы рейтинг 28?
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?
Ваш ответ:
№ 11
Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температур вычисляется по формуле \(T(t) = T_0 + bt + at^2 \), где \(t\) — время в минутах, \(T_0 = 1400\) К, \(a = - 10\) К/мин\({}^2\), \(b = 200\) К/мин. Известно, что при температуре нагревателя свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.
Ваш ответ:
№ 11
Камнеметательная машина выстреливает камни под некоторым острым углом к горизонту. Траектория полeта камня описывается формулой \(y = ax^2 + bx\), где \(a = - \frac{1}{{100}} \) м\({}^{ - 1}\), \(b=1\) — постоянные параметры, x (м) — смещение камня по горизонтали, y (м) — высота камня над землeй. На каком наибольшем расстоянии (в метрах) от крепостной стены высотой 8 м нужно расположить машину, чтобы камни пролетали над стеной на высоте не менее 1 метра?
Ваш ответ:
№ 11
Расстояние от наблюдателя, находящегося на небольшой высоте \(h\) километров над землeй до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt{2Rh}\), где \(R = 6400\)(км) — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километра? Ответ выразите в километрах.
Ваш ответ:
№ 11
Уравнение процесса, в котором участвовал газ, записывается в виде \(pV^a = const\), где p (Па) — давление в газе, V — объeм газа в кубических метрах, a — положительная константа. При каком наименьшем значении константы a уменьшение вдвое раз объeма газа, участвующего в этом процессе, приводит к увеличению давления не менее, чем в 4 раза?
Ваш ответ: