Элементы 1—5 из 5.
Задача №: 500. Прототип №: 500
Задумано несколько целых чисел. Набор этих чисел и все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Например, если задуманы числа 2, 3, 5, то на доске будет записан набор 2, 3, 5, 5, 7, 8, 10.
а) На доске выписан набор ? 8 , ? 5 , ? 4 , ? 3 , ? 1 , 1, 4. Какие числа были задуманы?
б) Для некоторых различных задуманных чисел в наборе, выписанном на доске, число 0 встречается ровно 2 раза. Какое наименьшее количество чисел могло быть задумано?
в) Для некоторых задуманных чисел на доске выписан набор. Всегда ли по этому набору можно однозначно определить задуманные числа?

Ответ:
Показать/скрыть правильный ответ
Задача №: 501. Прототип №: 501
Имеются каменные глыбы: 50 штук по 800 кг, 60 штук по 1000 кг и 60 штук по 1500 кг (раскалывать глыбы нельзя).
а) Можно ли увезти все эти глыбы одновременно на 60 грузовиках, грузоподъёмностью
5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?
б) Можно ли увезти все эти глыбы одновременно на 38 грузовиках, грузоподъёмностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?
в) Какое наименьшее количество грузовиков, грузоподъёмностью 5 тонн каждый, понадо- бится, чтобы вывезти все эти глыбы одновременно, предполагая, что в грузовик выбранные глыбы поместятся?

Ответ:
Показать/скрыть правильный ответ
Задача №: 502. Прототип №: 502
Дано трёхзначное натуральное число (число не может начинаться с нуля), не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 82?
б) Может ли частное этого числа и суммы его цифр быть равным 83?
в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?

Ответ:
Показать/скрыть правильный ответ
Задача №: 503. Прототип №: 503
Рассматриваются конечные непостоянные арифметические прогрессии, состо- ящие из натуральных чисел, которые не имеют простых делителей, отличных от 2 и 3.
а) Может ли в этой прогрессии быть три числа?
б) Какое наибольшее количество членов может быть в этой прогрессии?

Ответ:
Показать/скрыть правильный ответ
Задача №: 504. Прототип №: 504
Даны \(n\) различных натуральных чисел, составляющих арифметическую прогрессию \((n \ge 3)\).
а) Может ли сумма всех данных чисел быть равной 14?
б) Каково наибольшее значение \(n\) , если сумма всех данных чисел меньше 900?
в) Найдите все возможные значения \(n\) , если сумма всех данных чисел равна 123.

Ответ:
Показать/скрыть правильный ответ