Элементы 1—10 из 51.
Задача №: 317540. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317645. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и семь точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_7\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317647. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и девять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_9\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317649. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и десять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{10}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317651. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317653. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и одиннадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{11}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317655. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и одиннадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{11}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317657. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317659. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317661. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Перейти к странице: