To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Элементы 1—10 из 24.
Задача №: 27978. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1260 тонн представляют собой две пустотелые балки длиной l = 18 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 140 кПа. Ответ выразите в метрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 28289. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1500 тонн представляют собой две пустотелые балки длиной l = 15 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 200 кПа. Ответ выразите в метрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 28291. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1260 тонн представляют собой две пустотелые балки длиной l = 18 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 140 кПа. Ответ выразите в метрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 28293. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1320 тонн представляют собой две пустотелые балки длиной l = 20 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 165 кПа. Ответ выразите в метрах.
Ответ:
Задача №: 28295. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1530 тонн представляют собой две пустотелые балки длиной l = 17 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 300 кПа. Ответ выразите в метрах.
Ответ:
Задача №: 28297. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1410 тонн представляют собой две пустотелые балки длиной l = 20 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 235 кПа. Ответ выразите в метрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 42221. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1440 тонн представляют собой две пустотелые балки длиной l = 12 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 400 кПа. Ответ выразите в метрах.
Ответ:
Задача №: 42223. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 2430 тонн представляют собой две пустотелые балки длиной l = 15 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 270 кПа. Ответ выразите в метрах.
Ответ:
Задача №: 42225. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 1650 тонн представляют собой две пустотелые балки длиной l = 20 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 275 кПа. Ответ выразите в метрах.
Ответ:
Задача №: 42227. Прототип №: 27978
Опорные башмаки шагающего экскаватора, имеющего массу m = 2175 тонн представляют собой две пустотелые балки длиной l = 15 метров и шириной s метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой p = \frac{{mg}}{{2ls}}, где m — масса экскаватора (в тоннах), l — длина балок в метрах, s — ширина балок в метрах, g — ускорение свободного падения (считайте g=10м/с{}^2). Определите наименьшую возможную ширину опорных балок, если известно, что давление p не должно превышать 290 кПа. Ответ выразите в метрах.
Ответ:
Перейти к странице: