Элементы 31—39 из 39.
Задача №: 42619. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 32 километров?
Ответ:
Задача №: 42621. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 16 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 44 километров?
Ответ:
Задача №: 42623. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 12 километров?
Ответ:
Задача №: 42625. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 28 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 32 километров?
Ответ:
Задача №: 42627. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 20 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 44 километров?
Ответ:
Задача №: 42629. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 20 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 36 километров?
Ответ:
Задача №: 42631. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 12 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 28 километров?
Ответ:
Задача №: 42633. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 16 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 40 километров?
Ответ:
Задача №: 42635. Прототип №: 27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 48 километров?
Ответ:
Перейти к странице: