Элементы 21—30 из 51.
Задача №: 317683. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317685. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и одиннадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{11}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317687. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317689. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317691. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и десять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{10}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317693. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и девять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_9\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317695. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317697. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и десять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{10}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317699. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и семь точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_7\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Задача №: 317701. Прототип №: 317540
На рисунке изображён график функции \(y=f(x)\) и десять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{10}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?

Ответ:
Показать/скрыть правильный ответ
Перейти к странице: