EGEonline.org
ЕГЭ 2023
Задания
Результаты
О проекте
Статьи
Таблица перевода баллов
Войти
Регистрация
Профильный уровень
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Мини-тесты
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Базовый уровень
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Горячие клавиши:
A
и
D
- предыдущая/следующая страница с задачами
Tab
- переключение между полями ввода ответа
Enter
- отправка ответов
Поиск задачи по номеру
Перейти к странице:
<< Первая
< Предыдущая
1
2
3
4
Следующая >
Последняя >>
Элементы 21—30 из 39.
Задача №:
42599.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 36 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 40 километров?
Ответ:
Задача №:
42601.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 16 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 24 километров?
Ответ:
Задача №:
42603.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 32 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 40 километров?
Ответ:
Задача №:
42605.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 16 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 32 километров?
Ответ:
Задача №:
42607.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 12 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 32 километров?
Ответ:
Задача №:
42609.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 28 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 36 километров?
Ответ:
Задача №:
42611.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 24 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 32 километров?
Ответ:
Задача №:
42613.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 44 километров?
Ответ:
Задача №:
42615.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 20 километров?
Ответ:
Задача №:
42617.
Прототип №:
27985
Расстояние от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле \(l = \sqrt {\frac{Rh}{500}} \), где \(R = 6400\) км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 20 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 24 километров?
Ответ:
Перейти к странице:
1
2
3
4
42600
42602
42604
42606
42608
42610
42612
42614
42616
42618