To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...
Элементы 11—20 из 66.
Задача №: 27963. Прототип №: 27963
Для сматывания кабеля на заводе используют лебeдку, которая равноускоренно наматывает кабель на катушку. Угол, на который поворачивается катушка, изменяется со временем по закону \varphi = \omega t + \frac{{\beta t^2 }}{2}, где t — время в минутах, \omega = 20^\circ/мин — начальная угловая скорость вращения катушки, а \beta = 4^\circ/мин{}^2 — угловое ускорение, с которым наматывается кабель. Рабочий должен проверить ход его намотки не позже того момента, когда угол намотки \varphi достигнет 1200^\circ. Определите время после начала работы лебeдки, не позже которого рабочий должен проверить еe работу. Ответ выразите в минутах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27964. Прототип №: 27964
Мотоциклист, движущийся по городу со скоростью v_0 = 57 км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением a = 12 км/ч{}^2. Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением S = v_0 t + \frac{{at^2 }}{2}. Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 30 км от города. Ответ выразите в минутах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27965. Прототип №: 27965
Автомобиль, движущийся в начальный момент времени со скоростью v_0 = 20 м/с, начал торможение с постоянным ускорением a = 5 м/с{}^2. За t секунд после начала торможения он прошёл путь S = v_0 t - \frac{{at^2 }}{2} (м). Определите время, прошедшее от момента начала торможения, если известно, что за это время автомобиль проехал 30 метров. Ответ выразите в секундах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27966. Прототип №: 27966
Деталью некоторого прибора является вращающаяся катушка. Она состоит из трeх однородных соосных цилиндров: центрального массой m = 8 кг и радиуса R = 10 см, и двух боковых с массами M = 1 кг и с радиусами R+h. При этом момент инерции катушки относительно оси вращения, выражаемый в кг\cdot\text{см}^2, даeтся формулой I = \frac{{(m + 2M)R^2 }}{2} + M(2Rh + h^2 ). При каком максимальном значении h момент инерции катушки не превышает предельного значения 625\text{кг}\cdot\text{см}^2? Ответ выразите в сантиметрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27967. Прототип №: 27967
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: F_{\rm{A}} = \rho gl^3, где l — длина ребра куба в метрах, \rho = 1000~\text{кг}/\text{м}^3 — плотность воды, а g — ускорение свободного падения (считайте g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем 78 400 Н? Ответ выразите в метрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27968. Прототип №: 27968
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: F_{\rm{A}} = \alpha \rho gr^3, где \alpha = 4,2 — постоянная, r — радиус аппарата в метрах, \rho = 1000~\text{кг}/\text{м}^3 — плотность воды, а g — ускорение свободного падения (считайте g = 10 Н/кг). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 336000 Н? Ответ выразите в метрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27969. Прототип №: 27969
Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: P = \sigma ST^4 , где \sigma = 5,7 \cdot 10^{-8} — постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь S = \frac{1}{{16}} \cdot 10^{20} м{}^2, а излучаемая ею мощность P не менее 9,12\cdot 10^{25} Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27970. Прототип №: 27970
Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием f = 30 см. Расстояние d_1 от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние d_2 от линзы до экрана — в пределах от 150 до 180 см. Изображение на экране будет четким, если выполнено соотношение \frac{1}{{d_1}} + \frac{1}{{d_2}} = \frac{1}{f}. Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы еe изображение на экране было чeтким. Ответ выразите в сантиметрах.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27971. Прототип №: 27971
Перед отправкой тепловоз издал гудок с частотой f_0 = 440 Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону f(v) = \frac{{f_0 }}{{1 - \frac{v}{c}}} (Гц), где c — скорость звука в звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 10 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а c = 315 м/с. Ответ выразите в м/с.
Ответ:
Показать/скрыть правильный ответ
Задача №: 27972. Прототип №: 27972
По закону Ома для полной цепи сила тока, измеряемая в амперах, равна I = \frac{\varepsilon }{{R + r}}, где \varepsilon  — ЭДС источника (в вольтах), r = 1 Ом — его внутреннее сопротивление, R — сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 20\% от силы тока короткого замыкания I_{\text{кз}} = \frac{\varepsilon }{r}? (Ответ выразите в омах.)
Ответ:
Показать/скрыть правильный ответ
Перейти к странице: