Элементы 11—20 из 51.
Задача №: 317763. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317765. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317767. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и семь точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_7\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317769. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317771. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и шесть точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_6\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317773. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и десять точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{10}\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317775. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и восемь точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_8\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317777. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317779. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Задача №: 317781. Прототип №: 317541
На рисунке изображён график \(y=f'(x)\) производной функции \(f(x)\) и двенадцать точек на оси абсцисс: \(x_1\), \(x_2\), \(x_3\), \(\dots\), \(x_{12}\). В скольких из этих точек функция \(f(x)\) возрастает?

Ответ:
Перейти к странице: