№ 1
В университетскую библиотеку привезли новые учебники по геометрии для 2-3 курсов, по 280 штук для каждого курса. Все книги одинаковы по размеру. В книжном шкафу 7 полок, на каждой полке помещается 30 учебников. Сколько шкафов можно полностью заполнить новыми учебниками?
Ваш ответ:
№ 2
На диаграмме показана среднемесячная температура воздуха в Екатеринбурге (Свердловске) за каждый месяц 1973 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме разность между наибольшей и наименьшей среднемесячными температурами в 1973 году. Ответ дайте в градусах Цельсия.

Ваш ответ:
№ 3
Семья из трёх человек планирует поехать из Москвы в Чебоксары. Можно ехать поездом, а можно — на своей машине. Билет на поезд на одного человека стоит 770 рублей. Автомобиль расходует 9 литров бензина на 100 километров пути, расстояние по шоссе равно 700 км, а цена бензина равна 19 рублей за литр. Сколько рублей придётся заплатить за наиболее дешёвую поездку на троих?
Ваш ответ:
№ 4
Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см \(\times\) 1 см. Ответ дайте в квадратных сантиметрах.

Ваш ответ:
№ 5
В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.
Ваш ответ:
№ 6
Найдите корень уравнения \({{2}^{4-2x}}~=~64\).
Ваш ответ:
№ 7
Острые углы прямоугольного треугольника равны \(80^\circ\) и \(10^\circ\). Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Ваш ответ:
№ 8
На рисунке изображен график \(y=f'(x)\) — производной функции \(f(x)\), определенной на интервале \((-13; 5)\). Найдите количество точек максимума функции \(f(x)\), принадлежащих отрезку \([-11;4]\).

Ваш ответ:
№ 9
Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Ваш ответ:
№ 10
Найдите значение выражения \(\frac{{{(10a)}^{2}}-10a}{10a^2-a}\).
Ваш ответ:
№ 11
Мотоциклист, движущийся по городу со скоростью \(v_0 = 54\) км/ч, выезжает из него и сразу после выезда начинает разгоняться с постоянным ускорением \(a = 8\) км/ч\({}^2\). Расстояние от мотоциклиста до города, измеряемое в километрах, определяется выражением \(S = v_0 t + \frac{{at^2 }}{2}\). Определите наибольшее время, в течение которого мотоциклист будет находиться в зоне функционирования сотовой связи, если оператор гарантирует покрытие на расстоянии не далее чем в 58 км от города. Ответ выразите в минутах.
Ваш ответ:
№ 12
Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.

Ваш ответ:
№ 13
Два велосипедиста одновременно отправились в 132-километровый пробег. Первый ехал со скоростью, на 1 км/ч большей, чем скорость второго, и прибыл к финишу на 1 час раньше второго. Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
Ваш ответ:
№ 14
Найдите наибольшее значение функции \(y=-12x^2-x^3+20\) на отрезке \([-0,5;7]\).
Ваш ответ:
№ 15
а) Решите уравнение:
\(1+\log_{2}{(9x^2+5)}=\log_{\sqrt{2}}{\sqrt{8x^4+14}}\).
б) Найдите все корни, принадлежащие отрезку \([-1;\frac{8}{9}].\)
№ 16
В правильную шестиугольную пирамиду, боковое ребро которой равно \(\sqrt 5 \) , а высота равна \(1\), вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.
№ 17
\(\begin{equation*} \begin{cases} 4^{x} - 29 \cdot 2^{x} + 168 \le 0, \\ \frac{x^4-5x^3+3x-25}{x^2-5x} \ge x^2-\frac{1}{x-4}+\frac{5}{x}. \end{cases} \end{equation*}\)
№ 18
На прямой, содержащей медиану \(AD\) прямоугольного треугольника \(ABC\) с прямым углом \(C\) , взята точка \(E\) , удаленная от вершины \(A\) на расстояние, равное \(4\). Найдите площадь треугольника \(BCE\) , если \(BC = 6\) , \(AC = 4\).
№ 19
31 декабря 2013 года Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?
№ 20
Найдите все значения \(a\), при которых уравнение \(\sqrt{x^4+(a-5)^4}=|x+a-5|+|x-a+5| \) имеет единственное решение.
№ 21
Рассматриваются конечные непостоянные арифметические прогрессии, состо- ящие из натуральных чисел, которые не имеют простых делителей, отличных от 2 и 3.
а) Может ли в этой прогрессии быть три числа?
б) Какое наибольшее количество членов может быть в этой прогрессии?